3Dグラフィック、プログラミング、ものづくり・・・、創作活動を楽しもう!

DEMの勉強7

前回は、下記の論文で言うところのセル分割法を実装してみましたが、二つ目の手法、粒子登録法を組んでみました。

 

GPUによる近接相互作用に基づく粒子計算の近傍探索手法
https://ipsj.ixsq.nii.ac.jp/ej/?action=repository_uri&item_id=107323&file_id=1&file_no=1

 

出力結果は同じ(動画省略)。さぁ、速度はどうだ。

全粒子判定 1ステップあたり0.039175秒
セル分割法 1ステップあたり0.023670秒(1.65倍)
セル分割法+粒子登録法 0.022526秒(1.73倍)

 

・・・速くなり・・・ました。ちょっぴしだけど。

 

論文では、セル分割法単体と比べ、3倍以上の高速化となってますが、今回はそうはなりませんでした。

コードが良くない可能性は大いにあるけども、一応、セル分割法の候補が粒子登録法によって、1/3〜半分程度に抑えられることは確認。ただし、更新頻度が多いので、そっちに処理を食っている模様。試しに更新を判定するアルゴリズムはそのままに、粒子登録法の絞り込みをコメントアウトしてみると・・・

 

セル分割法+粒子登録法 0.022526
(1.73倍)
セル分割法+更新判定のみ 0.0224523570616(1.74倍)

変わらーん。むしろ絞り込みしない方が速いー。っとの結果になりましたorz

 

粒子登録法は、コードがごちゃごちゃするので、いっそ無くしてしまうか・・・?まぁでも、更新頻度が少ない解析なら、効果を発揮するやもしれぬ。って事で、アルゴリズム的な改良は一旦終了させて、モデルの検討をやっていきたいと思います。

 

dem.pyx

# -*- coding: utf-8 -*-

from libc.math cimport sqrt,sin,cos,atan2,fabs,ceil,floor
from cpython cimport bool
from cpython.mem cimport PyMem_Malloc, PyMem_Realloc, PyMem_Free

cdef double PI = 3.1415926535 #円周率
cdef double G = 9.80665 #重力加速度

class _Particle:
    pass
cdef struct Particle:
    
    #要素共通
    int etype #要素タイプ
    int n #要素No.
    double r#半径
    double x#X座標
    double y#Y座標
    double a#角度
    double dx#X方向増加量
    double dy#Y方向増加量
    double da#角度増加量
    double vx#X方向速度
    double vy#Y方向速度
    double va#角速度
    double fy
    double fx
    double fm
    double *en #弾性力(直方向)
    double *es #弾性力(せん断方向)
    
    #粒子専用
    double m# 質量
    double Ir#慣性モーメント
    int *nearList #近傍リスト
    int nearCount #近傍リスト数

class _Line:
    pass
cdef struct Line:
    
    #要素共通
    int etype #要素タイプ
    int n #要素No.
    double r#半径
    double x#X座標
    double y#Y座標
    double a#角度
    double dx#X方向増加量
    double dy#Y方向増加量
    double da#角度増加量
    double vx#X方向速度
    double vy#Y方向速度
    double va#角速度
    double fy
    double fx
    double fm
    #double *en #弾性力(直方向)
    #double *es #弾性力(せん断方向)
    
    #線要素専用
    double x1
    double y1
    double x2
    double y2

class _Interface:
    pass
cdef struct Interface:
    double kn #弾性係数(法線方向)
    double etan#粘性係数(法線方向)
    double ks#弾性係数(せん断方向)
    double etas#弾性係数(せん断方向)
    double frc#摩擦係数

#グローバル変数
cdef Particle *pe
cdef Line *le
cdef Interface infs[9]
cdef int infNo[9][9]
cdef int area[4] # 解析範囲
cdef int elCount #全要素数
cdef int peCount #粒子の数
cdef int leCount #線要素の数
cdef double dt = 0.001 #計算間隔
cdef int st = 0 #ステップ

cdef double rho = 10 #粒子間密度

def _nextStep():
    pass
cdef void nextStep():
    global st,nearUpdate
    if nearUpdate == True:
        cellRegist()
    resetForce()
    calcForce()
    if nearUpdate == True:
        nearUpdate = False
    updateCoord()
    st += 1
        
def _resetForce():
    pass
cdef void resetForce():
    cdef int i
    for i in range(peCount):
        pe[i].fx = 0
        pe[i].fy = 0
        pe[i].fm = 0

def _interface():
    pass
cdef Interface interface(int etype1,int etype2):
    cdef Interface inf
    cdef int n
    n = infNo[etype1][etype2]
    inf.kn = infs[n].kn
    inf.etan = infs[n].etan
    inf.ks = infs[n].ks
    inf.etas = infs[n].etas
    inf.frc = infs[n].frc
    return inf

def _calcForce():
    pass
cdef void calcForce():
    #2粒子間の接触判定
    cdef double lx,ly,ld,cos_a,sin_a
    cdef int i,j,n,m
    for i in range(peCount):
        # 粒子登録法による近傍リストの更新
        if nearUpdate == True:
            m = 0
            for n in range(pe[i].nearCount):
                j = pe[i].nearList[n]
                rc = pe[i].r + pe[j].r + nearAlpha * r_min*2
                lx = pe[j].x - pe[i].x
                ly = pe[j].y - pe[i].y
                ld = (lx**2+ly**2)**0.5
                if ld < rc:
                    nearList[m] = j
                    m += 1
            pe[i].nearCount = m
            for n in range(pe[i].nearCount):
                pe[i].nearList[n] = nearList[n]
        
        #for j in range(peCount):
        m = 0
        for n in range(pe[i].nearCount):
            j = pe[i].nearList[n]
            if i == j:
                continue
            lx = pe[j].x - pe[i].x
            ly = pe[j].y - pe[i].y
            ld = (lx**2+ly**2)**0.5
                 
            if ld<(pe[i].r+pe[j].r):
                cos_a = lx/ld
                sin_a = ly/ld
                forcePar2par(i,j,cos_a,sin_a)
            else:
                pe[i].en[j] = 0.0
                pe[i].es[j] = 0.0
        
    #粒子と壁の接触判定
    cdef double cond[4]
    cdef double xs[4]
    cdef double ys[4]
    for i in range(peCount):
        cond = [pe[i].x-pe[i].r-area[0],-(pe[i].x+pe[i].r-area[1]),
                pe[i].y-pe[i].r-area[2],-(pe[i].y+pe[i].r-area[3])]
        xs = [area[0],area[1],pe[i].x,pe[i].x]
        ys = [pe[i].y,pe[i].y,area[2],area[3]]
        for j in range(4):
            n = peCount + leCount + j
            if cond[j] < 0:
                lx = xs[j] - pe[i].x
                ly = ys[j] - pe[i].y
                ld = sqrt(lx**2+ly**2)
                cos_a = lx/ld
                sin_a = ly/ld
                forceLine2par(i,n,2,cos_a,sin_a)
            else:
                pe[i].en[n] = 0.0
                pe[i].es[n] = 0.0
    
    #粒子と線の接触判定
    cdef bool hit
    cdef double x,y,a,d,b,s
    for i in range(peCount):
        for j in range(leCount):
            hit = False
            th0 = atan2(le[j].y2-le[j].y1, le[j].x2-le[j].x1)
            th1 = atan2(pe[i].y -le[j].y1, pe[i].x -le[j].x1)
            a = sqrt((pe[i].x-le[j].x1)**2+(pe[i].y-le[j].y1)**2)
            d = fabs(a*sin(th1-th0))
            if d < pe[i].r:
                b = sqrt((pe[i].x -le[j].x2)**2+(pe[i].y -le[j].y2)**2)
                s = sqrt((le[j].x2-le[j].x1)**2+(le[j].y2-le[j].y1)**2)
                if a < s and b < s:
                    s = sqrt(a**2-d**2)
                    x = le[j].x1 + s*cos(th0)
                    y = le[j].y1 + s*sin(th0)
                    hit = True
                elif a < b and a < pe[i].r:
                    x = le[j].x1
                    y = le[j].y1
                    hit = True
                elif b < pe[i].r:
                    x = le[j].x2
                    y = le[j].y2
                    hit = True       
            if hit:
                lx = x - pe[i].x
                ly = y - pe[i].y
                ld = sqrt(lx**2+ly**2)
                cos_a = lx/ld
                sin_a = ly/ld
                forceLine2par(i,le[j].n,2,cos_a,sin_a)
            else:
                pe[i].en[le[j].n] = 0.0
                pe[i].es[le[j].n] = 0.0
    #外力
    for i in range(peCount):
        pe[i].fy += -G*pe[i].m #重力

def _forcePar2par():
    pass
cdef void forcePar2par(int i,int j,double cos_a,double sin_a):
    cdef double un,us,vn,vs,hn,hs
    cdef Interface inf
    
    #相対的変位増分
    un = +(pe[i].dx-pe[j].dx)*cos_a+(pe[i].dy-pe[j].dy)*sin_a
    us = -(pe[i].dx-pe[j].dx)*sin_a+(pe[i].dy-pe[j].dy)*cos_a+(pe[i].r*pe[i].da+pe[j].r*pe[j].da)
    #相対的速度増分
    #vn = +(pe[i].vx-pe[j].vx)*cos_a+(pe[i].vy-pe[j].vy)*sin_a
    #vs = -(pe[i].vx-pe[j].vx)*sin_a+(pe[i].vy-pe[j].vy)*cos_a+(pe[i].r*pe[i].va+pe[j].r*pe[j].va)
    
    inf = interface(pe[i].etype,pe[j].etype)
    
    #合力(局所座標系)
    pe[i].en[j] += inf.kn*un
    pe[i].es[j] += inf.ks*us
    hn = pe[i].en[j] + inf.etan*un/dt
    hs = pe[i].es[j] + inf.etas*us/dt
    
    if hn <= 0.0: #法線力がなければ、せん断力は0 hs = 0.0 elif fabs(hs) >= inf.frc*hn:
        #摩擦力以上のせん断力は働かない
        hs = inf.frc*fabs(hn)*hs/fabs(hs)     
    
    #全体合力(全体座標系)
    pe[i].fx += -hn*cos_a + hs*sin_a
    pe[i].fy += -hn*sin_a - hs*cos_a
    pe[i].fm -=  pe[i].r*hs
    pe[j].fx +=  hn*cos_a - hs*sin_a
    pe[j].fy +=  hn*sin_a + hs*cos_a
    pe[j].fm -=  pe[j].r*hs

def _forceLine2Par():
    pass
cdef void forceLine2par(int i,int ln,int mat,double cos_a, double sin_a):
    cdef double un,us,vn,vs,hn,hs
    cdef Interface inf
    
    #相対的変位増分
    un = +pe[i].dx*cos_a+pe[i].dy*sin_a
    us = -pe[i].dx*sin_a+pe[i].dy*cos_a+pe[i].r*pe[i].da
    #相対的速度増分
    vn = +pe[i].vx*cos_a+pe[i].vy*sin_a
    vs = -pe[i].vx*sin_a+pe[i].vy*cos_a+pe[i].r*pe[i].va
    
    inf = interface(pe[i].etype,mat)
    
    #合力(局所座標系)
    pe[i].en[ln] += inf.kn*un
    pe[i].es[ln] += inf.ks*us
    hn = pe[i].en[ln] + inf.etan*vn
    hs = pe[i].es[ln] + inf.etas*vs
    
    if hn <= 0.0:#法線力がなければ、せん断力は0 hs = 0.0 elif fabs(hs) >= inf.frc*hn:#摩擦力以上のせん断力は働かない
        hs = inf.frc*fabs(hn)*hs/fabs(hs)    
    
    #全体合力(全体座標系)
    pe[i].fx += -hn*cos_a + hs*sin_a
    pe[i].fy += -hn*sin_a - hs*cos_a
    pe[i].fm -=  pe[i].r*hs

def _updateCoord():
    pass
cdef void updateCoord():
    global xbook
    cdef double ax,ay,aa,v,vmax
    vmax = 0
    cdef int i
    for i in range(peCount):
        #位置更新(オイラー差分)
        ax = pe[i].fx/pe[i].m
        ay = pe[i].fy/pe[i].m
        aa = pe[i].fm/pe[i].Ir
        pe[i].vx += ax*dt
        pe[i].vy += ay*dt
        pe[i].va += aa*dt
        pe[i].dx = pe[i].vx*dt
        pe[i].dy = pe[i].vy*dt
        pe[i].da = pe[i].va*dt
        pe[i].x += pe[i].dx
        pe[i].y += pe[i].dy
        pe[i].a += pe[i].da
        #以下近傍リスト用処理
        v = sqrt(pe[i].vx**2+pe[i].vy**2)
        if vmax < v: vmax = v xbook += vmax * dt if xbook > nearAlpha*r_min:
        global nearUpdate
        nearUpdate = True
        xbook = 0

#セル分割法と粒子登録法
##cell = []
##cellCount = []
cdef int ***cell
cdef int **cellCount
cdef int cellInfo[3]
cdef bool nearUpdate = False
cdef double nearAlpha = 0.1
cdef double xbook
cdef int *nearList 
def _cellInit():
    pass
cdef void cellInit():
    global cell,cellCount,nearList
    cell_width = r_max*2 + nearAlpha * r_min*2
    xn = int(ceil((area[1]-area[0])/cell_width))
    yn = int(ceil((area[3]-area[2])/cell_width))
    cn = int(ceil(cell_width/r_min)+1)**2 #+1予備(重なりを考慮)
##    cell = [[[-1 for i in range(cn)] for j in range(yn)] for k in range(xn)]
##    cellCount = [[0 for i in range(yn)] for j in range(xn)]
    cell = <int***> PyMem_Malloc(xn * sizeof(int*))
    cellCount = <int**> PyMem_Malloc(xn * sizeof(int*))
    for i in range(xn):
        cell[i] = <int**> PyMem_Malloc(yn * sizeof(int*))
        cellCount[i] = <int*> PyMem_Malloc(yn * sizeof(int))
        for j in range(yn):
            cell[i][j] = <int*> PyMem_Malloc(cn * sizeof(int))
    cellInfo[0] = xn #列数
    cellInfo[1] = yn #行数
    cellInfo[2] = cn #セル格納最大数
    cellReset()
    nearList = <int*> PyMem_Malloc(cn * sizeof(int))
    
def _cellRegist():
    pass
cdef void cellRegist():
    cdef double cell_width
    cdef int xn,yn,cn,n,i,k,j,l
    cellReset()
    cell_width = r_max*2 + nearAlpha * r_min*2
    #セルに要素No格納
    for i in range(peCount):
        xn = int(floor(pe[i].x/cell_width))
        yn = int(floor(pe[i].y/cell_width))
        if xn<0 or cellInfo[0]<=xn or yn<0 or cellInfo[1]<=yn:
            #print('Error! particle coord is out of range.')
            #print('Particle n=%d x=%0.3f y=%0.3f' % (i,pe[i].x,pe[i].y))
            continue 
        cn = cellCount[xn][yn]
        cell[xn][yn][cn] = i
        cellCount[xn][yn] += 1
    #近傍リスト作成
    for i in range(peCount):
        xn = int(floor(pe[i].x/cell_width))
        yn = int(floor(pe[i].y/cell_width))
        n = 0
        for j in range(xn-1,xn+2):
            for k in range(yn-1,yn+2):
                if j < 0 or cellInfo[0] <= j:
                    continue
                if k < 0 or cellInfo[1] <= k:
                    continue
                for l in range(cellCount[j][k]):
                    pe[i].nearList[n] = cell[j][k][l]
                    n += 1
        pe[i].nearCount = n
        
cdef void cellReset():
    cdef int i,j,k
    for i in range(cellInfo[0]):
        for j in range(cellInfo[1]):
            cellCount[i][j] = 0
            for k in range(cellInfo[2]):
                cell[i][j][k] = -1

# -------------------------
# Pythonからの設定用
# -------------------------

def setNumberOfParticle(n):
    global peCount,pe
    peCount = n
    pe = <Particle*> PyMem_Malloc(n * sizeof(Particle))
    if not pe:
        raise MemoryError()

def setNumberOfLine(n):
    global leCount,le
    leCount = n
    le = <Line*> PyMem_Malloc(n * sizeof(Line))
    if not le:
        raise MemoryError()

def initialize():
    global elCount
    elCount = peCount + leCount + 4
    cdef int i,j
    for i in range(peCount):
        pe[i].etype = 1
        pe[i].n = i
        pe[i].x = 0
        pe[i].y = 0
        pe[i].r = 0
        pe[i].a = 0
        pe[i].dx = 0
        pe[i].dy = 0
        pe[i].da = 0
        pe[i].vx = 0
        pe[i].vy = 0
        pe[i].va = 0
        pe[i].fx = 0
        pe[i].fy = 0
        pe[i].fm = 0
        pe[i].m = 0
        pe[i].Ir = 0
        pe[i].en = <double*> PyMem_Malloc(elCount * sizeof(double))
        pe[i].es = <double*> PyMem_Malloc(elCount * sizeof(double))
        for j in range(elCount):
            pe[i].en[j] = 0
            pe[i].es[j] = 0
    for i in range(leCount):
        le[i].etype = 2
        le[i].n = peCount+i

def setDeltaTime(sec):
    global dt
    dt = sec

def setParticle(pe_no,pe_obj):
    pe[pe_no].r = pe_obj.r
    pe[pe_no].x = pe_obj.x
    pe[pe_no].y = pe_obj.y
    pe[pe_no].a = pe_obj.a
    pe[pe_no].dx = pe_obj.dx
    pe[pe_no].dy = pe_obj.dy
    pe[pe_no].da = pe_obj.da
    pe[pe_no].vx = pe_obj.vx
    pe[pe_no].vy = pe_obj.vy
    pe[pe_no].va = pe_obj.va 
    pe[pe_no].fx = pe_obj.fx 
    pe[pe_no].fy = pe_obj.fy
    pe[pe_no].fm = pe_obj.fm
    pe[pe_no].m = pe_obj.m
    pe[pe_no].Ir = pe_obj.Ir
    cdef int i
    for i in range(elCount):
        if i < len(pe_obj.en): pe[pe_no].en[i] = pe_obj.en[i] pe[pe_no].es[i] = pe_obj.es[i] def particle(pe_no,pe_obj): pe_obj.n = pe[pe_no].n pe_obj.x = pe[pe_no].x pe_obj.y = pe[pe_no].y pe_obj.a = pe[pe_no].a pe_obj.dx = pe[pe_no].dx pe_obj.dy = pe[pe_no].dy pe_obj.da = pe[pe_no].da pe_obj.vx = pe[pe_no].vx pe_obj.vy = pe[pe_no].vy pe_obj.va = pe[pe_no].va pe_obj.fx = pe[pe_no].fx pe_obj.fy = pe[pe_no].fy pe_obj.fm = pe[pe_no].fm pe_obj.m = pe[pe_no].m pe_obj.Ir = pe[pe_no].Ir pe_obj.en = [0.0 for i in range(elCount)] pe_obj.es = [0.0 for i in range(elCount)] for i in range(elCount): pe_obj.en[i] = pe[pe_no].en[i] pe_obj.es[i] = pe[pe_no].es[i] return pe_obj def setLine(l_no,l_obj): le[l_no].x1 = l_obj.x1 le[l_no].y1 = l_obj.y1 le[l_no].x2 = l_obj.x2 le[l_no].y2 = l_obj.y2 return l_obj def line(l_no,l_obj): l_obj.x1 = le[l_no].x1 l_obj.y1 = le[l_no].y1 l_obj.x2 = le[l_no].x2 l_obj.y2 = le[l_no].y2 return l_no def setArea(x_min,x_max,y_min,y_max): global area area[0] = x_min area[1] = x_max area[2] = y_min area[3] = y_max def setInterface(mat1,mat2,inf_no,inf_obj): infNo[mat1][mat2] = inf_no infs[inf_no].kn = inf_obj.kn infs[inf_no].etan = inf_obj.etan infs[inf_no].ks = inf_obj.ks infs[inf_no].etas = inf_obj.etas infs[inf_no].frc = inf_obj.frc cdef double r_max #粒子の最大半径 cdef double r_min #粒子の最小半径 def setup(): global r_max,r_min cdef int i r_max = 0 r_min = float('inf') for i in range(peCount): if pe[i].r > r_max:
            r_max = pe[i].r
        if pe[i].r < r_min:
            r_min = pe[i].r
    cellInit()
    pn = cellInfo[2] * 9
    for i in range(peCount):
        pe[i].nearList = <int*> PyMem_Malloc(pn * sizeof(int))
    cellRegist()

def step():
    return st

def calcStep(int n=1):
    cdef int i
    for i in range(n):
        nextStep()

 

dem_ui.py

# -*- coding: utf-8 -*-

print u'読み込み中...',

import sys
import math
import random
import time
import cPickle
import Tkinter

import dem

from PIL import ImageGrab

class Element(object):
    def __init__(self):
        self.n = 0 #要素No.
        self.r = 0 #半径
        self.x = 0 #X座標
        self.y = 0 #Y座標
        self.a = 0 #角度
        self.dx = 0 #X方向増加量
        self.dy = 0 #Y方向増加量
        self.da = 0 #角度増加量
        self.vx = 0 #X方向速度
        self.vy = 0 #Y方向速度
        self.va = 0 #角速度
        self.fy = 0
        self.fx = 0
        self.fm = 0
        
        self.en = [] #弾性力(直方向)
        self.es = [] #弾性力(せん断方向)

class Particle(object):
    def __init__(self,x=0,y=0,vx=0,vy=0):
        #要素共通
        self.etype = 1 #要素タイプ
        self.n = 0 #要素No.
        self.r = 5.0 #半径
        self.x = x #X座標
        self.y = y #Y座標
        self.a = 0.0 #角度
        self.dx = 0.0 #X方向増加量
        self.dy = 0.0 #Y方向増加量
        self.da = 0.0 #角度増加量
        self.vx = vx #X方向速度
        self.vy = vy #Y方向速度
        self.va = 0.0 #角速度
        self.fx = 0.0 #X方向節点力
        self.fy = 0.0 #Y方向節点力
        self.fm = 0.0 #回転モーメント
        self.en = [] #弾性力(直方向)
        self.es = [] #弾性力(せん断方向)
    
        #粒子専用
        rho = 10
        self.m = 4.0/3.0*math.pi*rho*self.r**3 # 質量
        self.Ir = math.pi*rho*self.r**4/2.0 #慣性モーメント

class Line(object):
    def __init__(self,x1,y1,x2,y2):
        super(Line,self).__init__()
        self.type = 2
        self.x1 = x1
        self.y1 = y1
        self.x2 = x2
        self.y2 = y2

class Interface(object):
    def __init__(self):
        self.kn = 0 #弾性係数(法線方向)
        self.etan = 0 #粘性係数(法線方向)
        self.ks = 0 #弾性係数(せん断方向)
        self.etas = 0 #粘性係数(せん断方向)
        self.frc = 0 #摩擦係数

class DEM_UI:
    def __init__(self):
        self._lines = []
        
        self._config()
        #self._test() 
        
    def _test(self):
        self.area = [5,295,5,195]
        self.parCount = 2
        dem.setArea(*self.area)
        dem.setDeltaTime(0.01)
        dem.setNumberOfParticle(self.parCount)
        dem.setNumberOfLine(0)
        dem.initialize()
        p1 = Particle(50,50)
        p1.r = 10
        p2 = Particle(50,70)
        p2.r = 10
        dem.setParticle(0,p1)
        dem.setParticle(1,p2)
        #粒子同士
        inf = [[Interface() for i in range(9)] for j in range(9)]
        inf[1][1].kn  = 100000 #弾性係数(法線方向)
        inf[1][1].etan= 50000 #粘性係数(法線方向)
        inf[1][1].ks  = 5000 #弾性係数(せん断方向)
        inf[1][1].etas= 1000 #粘性係数(せん断方向)
        inf[1][1].frc = 10 #摩擦係数
        #粒子と線要素
        inf[1][2].kn  = 500000
        inf[1][2].etan= 10000
        inf[1][2].ks  = 1000
        inf[1][2].etas= 900
        inf[1][2].frc = 100
        dem.setInterface(1,1,0,inf[1][1])
        dem.setInterface(1,2,1,inf[1][2])
        dem.setup()
        
    def _config(self):
        
        dt = 0.01
        #area = [5,295,5,195]
        area = [5,295,-500,195]
        step = 2
        
        # lines
        lines = []
        lines.append(Line(5,40,150,50))
        if step <= 1: lines.append(Line(150,50,150,195)) else: lines.append(Line(150,50,150,60)) # particle pars = [] if step == 0: _area = [10,130,45,190] pars = self._setParInArea(_area,pars,lines) elif step == 1: pars = self.load() #さらに粒子追加 #_area = [150,290,10,90] _area = [10,140,130,190] add_pars = self._setParInArea(_area,pars,lines) #弾性力調整 ad = [0 for i in range(len(add_pars))] for p in pars: p.en = p.en[:len(pars)] + ad + p.en[len(pars):] p.es = p.es[:len(pars)] + ad + p.es[len(pars):] pars = pars + add_pars else: pars = self.load() # interface inf1 = Interface() #粒子同士 inf1.kn = 100000 #弾性係数(法線方向) inf1.etan= 50000 #粘性係数(法線方向) inf1.ks = 5000 #弾性係数(せん断方向) inf1.etas= 1000 #粘性係数(せん断方向) inf1.frc = 10 #摩擦係数 #粒子と線要素 inf2 = Interface() inf2.kn = 500000 inf2.etan= 10000 inf2.ks = 1000 inf2.etas= 900 inf2.frc = 100 infs = [] infs.append([1,1,0,inf1]) infs.append([1,2,1,inf2]) self.setup(dt,area,pars,lines,infs) def _setParInArea(self,area,pars,lines,pr=5): # area = [x_min,x_max,y_min,y_max] add_pars = [] for x in range(area[0],area[1],1): for y in range(area[2],area[3],1): _pars = pars + add_pars if self._hitParticle(x,y,pr,_pars): continue if self._hitLine(x,y,pr,lines): continue add_pars.append(Particle(x,y)) return add_pars def _hitParticle(self,x,y,r,pars): hit = False for p in pars: lx = p.x - x ly = p.y - y ld = (lx**2+ly**2)**0.5 if (p.r+r)>=ld:
                hit = True
                break
        return hit
    
    def _hitLine(self,px,py,pr,lines):
        hit = False
        for l in lines:
            th0 = math.atan2(l.y2-l.y1,l.x2-l.x1)
            th1 = math.atan2(py-l.y1,px-l.x1)
            a = math.sqrt((px-l.x1)**2+(py-l.y1)**2)
            d = abs(a*math.sin(th1-th0))
            if d < pr:
                b = math.sqrt((px-l.x2)**2+(py-l.y2)**2)
                s = math.sqrt((l.x2-l.x1)**2+(l.y2-l.y1)**2)
                if a < s and b < s:
                    hit = True
                elif a < b and a < pr:
                    hit = True
                elif b < pr: hit = True if hit: break return hit def setup(self,dt,area,pars,lines,infs): #setup dem dem.setDeltaTime(dt) dem.setArea(*area) dem.setNumberOfParticle(len(pars)) dem.setNumberOfLine(len(lines)) dem.initialize() for i,l in enumerate(lines): dem.setLine(i,l) for i,p in enumerate(pars): dem.setParticle(i,p) for v in infs: dem.setInterface(*v) dem.setup() self.area = area self.parCount = len(pars) self._lines = lines def particles(self): pars = [] for i in range(self.parCount): p = dem.particle(i,Particle()) pars.append(p) return pars def lines(self): return self._lines def save(self,fp='init.dem'): f = open(fp,'wb') f.write(cPickle.dumps(self.particles())) f.close() print('save particles data at '+fp) def load(self,fp='init.dem'): f = open(fp,'rb') pars = cPickle.loads(f.read()) f.close() return pars class Window(Tkinter.Tk): def __init__(self): print u'初期設定中...', self.loop_n = 0 self.width = 300 self.height = 200 self.scale = 1.0 Tkinter.Tk.__init__(self) self.canvas = Tkinter.Canvas(self, bg="white") self.canvas.pack(fill=Tkinter.BOTH,expand=True) self.geometry('%dx%d' % (self.width,self.height)) self.title('DEM') self.dem_ui = DEM_UI() a = self.dem_ui.area area = [a[0],a[2],a[1],a[2],a[1],a[3],a[0],a[3],a[0],a[2]] xy = self.viewCoord(area) self.canvas.create_line(xy) for l in self.dem_ui.lines(): xy = self.viewCoord([l.x1,l.y1,l.x2,l.y2]) self.canvas.create_line(xy,width=1) self.redraw() self.update_idletasks() print(u'完了') print(u'粒子要素数: %d ' % self.dem_ui.parCount) print(u'解析開始') def calcloop(self): if self.loop_n == 1: self.saveCalcTime('start') pass if self.loop_n % 5 == 0: print('Step %d' % dem.step()) if self.loop_n % 1 == 0: self.redraw() #self.saveImage() if self.loop_n >= 30:
            print(u'解析終了.設定最大ループに達しました')
            self.saveCalcTime('finish')
            #self.dem_ui.save()
        else:
            self.after(0,self.calcloop)
        dem.calcStep(10)
        self.loop_n += 1
        self.update_idletasks()
 
    def redraw(self):
        self.canvas.delete('elem')
        h = self.height
        for p in self.dem_ui.particles():
            x1,y1 = self.viewCoord([p.x-p.r,p.y-p.r])
            x2,y2 = self.viewCoord([p.x+p.r,p.y+p.r])
            self.canvas.create_oval(x1,y1,x2,y2,tags='elem')
            
            x1,y1 = self.viewCoord([p.x,p.y])
            x2,y2 = self.viewCoord([p.x+p.r*math.cos(p.a),
                                    p.y+p.r*math.sin(p.a)])
            self.canvas.create_line(x1,y1,x2,y2,tags='elem')
        
    def viewCoord(self,coords,offset=(0,0)):
        s = self.scale # 表示倍率
        h = self.height #表示画面高さ
        w = self.width #表示画面幅
        x_offset = 0#int(w/2)
        y_offset = 0#int(h/2)
        xy_list = []
        for i in range(0,len(coords),2):
            x = round(s*coords[i])+x_offset
            y = round(h-s*coords[i+1])-y_offset
            x = x + offset[0]
            y = y + offset[1]
            xy_list.append(x)
            xy_list.append(y)
        return xy_list

    def saveCalcTime(self,option):
        if option == 'start':
            self.st_time = time.time()
            self.st_step = dem.step()
        elif option == 'finish':
            now = time.time()
            dt = now-self.st_time
            ds = dem.step() - self.st_step +1
            f = open('calc_time.txt','w')
            f.write('START STEP %d\n' % self.st_step)
            f.write('START TIME {0}\n'.format(self.st_time))
            f.write('END STEP %d\n' % dem.step())
            f.write('END TIME {0}\n'.format(now))
            f.write('DIFF STEP %d \n' % ds)
            f.write('DIFF TIME {0}\n'.format(dt))
            f.write('ONE STEP TIME {0}'.format(dt/ds))
            f.close()
        
    def saveImage(self):
        filepath = 'c://Temp/dem/capture%05d.png' % dem.step()
        img = ImageGrab.grab()
        s,x,y = self.geometry().split('+')
        w,h = s.split('x')
        w,h,x,y = map(int,[w,h,x,y])
        x += 8
        y += 30
        img = img.crop((x,y,x+w,y+h))
        img.save(filepath)

def main():
    w = Window()
    w.after(0,w.calcloop)
    w.mainloop()
    
def test():
    dem_ui = DEM_UI()
    en1 = dem_ui.particles()[100].es
    pars = dem_ui.load()
    en2 = pars[100].es
    for i in range(len(en1)):
        v = en1[i] - en2[i]
        #if abs(v) > 1:
        print(i,v)#,en1[i],en2[i])

print u'完了'

if __name__ == '__main__':
    main()

 

コメントを残す

メールアドレスが公開されることはありません。

TibLab Blog © 2014 Frontier Theme