前回は、下記の論文で言うところのセル分割法を実装してみましたが、二つ目の手法、粒子登録法を組んでみました。
GPUによる近接相互作用に基づく粒子計算の近傍探索手法
https://ipsj.ixsq.nii.ac.jp/ej/?action=repository_uri&item_id=107323&file_id=1&file_no=1
出力結果は同じ(動画省略)。さぁ、速度はどうだ。
全粒子判定 1ステップあたり0.039175秒
セル分割法 1ステップあたり0.023670秒(1.65倍)
セル分割法+粒子登録法 0.022526秒(1.73倍)
・・・速くなり・・・ました。ちょっぴしだけど。
論文では、セル分割法単体と比べ、3倍以上の高速化となってますが、今回はそうはなりませんでした。
コードが良くない可能性は大いにあるけども、一応、セル分割法の候補が粒子登録法によって、1/3〜半分程度に抑えられることは確認。ただし、更新頻度が多いので、そっちに処理を食っている模様。試しに更新を判定するアルゴリズムはそのままに、粒子登録法の絞り込みをコメントアウトしてみると・・・
セル分割法+粒子登録法 0.022526(1.73倍)
セル分割法+更新判定のみ 0.022452(1.74倍)
変わらーん。むしろ絞り込みしない方が速いー。っとの結果になりましたorz
粒子登録法は、コードがごちゃごちゃするので、いっそ無くしてしまうか・・・?まぁでも、更新頻度が少ない解析なら、効果を発揮するやもしれぬ。って事で、アルゴリズム的な改良は一旦終了させて、モデルの検討をやっていきたいと思います。
dem.pyx
# -*- coding: utf-8 -*-
from libc.math cimport sqrt,sin,cos,atan2,fabs,ceil,floor
from cpython cimport bool
from cpython.mem cimport PyMem_Malloc, PyMem_Realloc, PyMem_Free
cdef double PI = 3.1415926535 #円周率
cdef double G = 9.80665 #重力加速度
class _Particle:
pass
cdef struct Particle:
#要素共通
int etype #要素タイプ
int n #要素No.
double r#半径
double x#X座標
double y#Y座標
double a#角度
double dx#X方向増加量
double dy#Y方向増加量
double da#角度増加量
double vx#X方向速度
double vy#Y方向速度
double va#角速度
double fy
double fx
double fm
double *en #弾性力(直方向)
double *es #弾性力(せん断方向)
#粒子専用
double m# 質量
double Ir#慣性モーメント
int *nearList #近傍リスト
int nearCount #近傍リスト数
class _Line:
pass
cdef struct Line:
#要素共通
int etype #要素タイプ
int n #要素No.
double r#半径
double x#X座標
double y#Y座標
double a#角度
double dx#X方向増加量
double dy#Y方向増加量
double da#角度増加量
double vx#X方向速度
double vy#Y方向速度
double va#角速度
double fy
double fx
double fm
#double *en #弾性力(直方向)
#double *es #弾性力(せん断方向)
#線要素専用
double x1
double y1
double x2
double y2
class _Interface:
pass
cdef struct Interface:
double kn #弾性係数(法線方向)
double etan#粘性係数(法線方向)
double ks#弾性係数(せん断方向)
double etas#弾性係数(せん断方向)
double frc#摩擦係数
#グローバル変数
cdef Particle *pe
cdef Line *le
cdef Interface infs[9]
cdef int infNo[9][9]
cdef int area[4] # 解析範囲
cdef int elCount #全要素数
cdef int peCount #粒子の数
cdef int leCount #線要素の数
cdef double dt = 0.001 #計算間隔
cdef int st = 0 #ステップ
cdef double rho = 10 #粒子間密度
def _nextStep():
pass
cdef void nextStep():
global st,nearUpdate
if nearUpdate == True:
cellRegist()
resetForce()
calcForce()
if nearUpdate == True:
nearUpdate = False
updateCoord()
st += 1
def _resetForce():
pass
cdef void resetForce():
cdef int i
for i in range(peCount):
pe[i].fx = 0
pe[i].fy = 0
pe[i].fm = 0
def _interface():
pass
cdef Interface interface(int etype1,int etype2):
cdef Interface inf
cdef int n
n = infNo[etype1][etype2]
inf.kn = infs[n].kn
inf.etan = infs[n].etan
inf.ks = infs[n].ks
inf.etas = infs[n].etas
inf.frc = infs[n].frc
return inf
def _calcForce():
pass
cdef void calcForce():
#2粒子間の接触判定
cdef double lx,ly,ld,cos_a,sin_a
cdef int i,j,n,m
for i in range(peCount):
# 粒子登録法による近傍リストの更新
if nearUpdate == True:
m = 0
for n in range(pe[i].nearCount):
j = pe[i].nearList[n]
rc = pe[i].r + pe[j].r + nearAlpha * r_min*2
lx = pe[j].x - pe[i].x
ly = pe[j].y - pe[i].y
ld = (lx**2+ly**2)**0.5
if ld < rc:
nearList[m] = j
m += 1
pe[i].nearCount = m
for n in range(pe[i].nearCount):
pe[i].nearList[n] = nearList[n]
#for j in range(peCount):
m = 0
for n in range(pe[i].nearCount):
j = pe[i].nearList[n]
if i == j:
continue
lx = pe[j].x - pe[i].x
ly = pe[j].y - pe[i].y
ld = (lx**2+ly**2)**0.5
if ld<(pe[i].r+pe[j].r):
cos_a = lx/ld
sin_a = ly/ld
forcePar2par(i,j,cos_a,sin_a)
else:
pe[i].en[j] = 0.0
pe[i].es[j] = 0.0
#粒子と壁の接触判定
cdef double cond[4]
cdef double xs[4]
cdef double ys[4]
for i in range(peCount):
cond = [pe[i].x-pe[i].r-area[0],-(pe[i].x+pe[i].r-area[1]),
pe[i].y-pe[i].r-area[2],-(pe[i].y+pe[i].r-area[3])]
xs = [area[0],area[1],pe[i].x,pe[i].x]
ys = [pe[i].y,pe[i].y,area[2],area[3]]
for j in range(4):
n = peCount + leCount + j
if cond[j] < 0:
lx = xs[j] - pe[i].x
ly = ys[j] - pe[i].y
ld = sqrt(lx**2+ly**2)
cos_a = lx/ld
sin_a = ly/ld
forceLine2par(i,n,2,cos_a,sin_a)
else:
pe[i].en[n] = 0.0
pe[i].es[n] = 0.0
#粒子と線の接触判定
cdef bool hit
cdef double x,y,a,d,b,s
for i in range(peCount):
for j in range(leCount):
hit = False
th0 = atan2(le[j].y2-le[j].y1, le[j].x2-le[j].x1)
th1 = atan2(pe[i].y -le[j].y1, pe[i].x -le[j].x1)
a = sqrt((pe[i].x-le[j].x1)**2+(pe[i].y-le[j].y1)**2)
d = fabs(a*sin(th1-th0))
if d < pe[i].r:
b = sqrt((pe[i].x -le[j].x2)**2+(pe[i].y -le[j].y2)**2)
s = sqrt((le[j].x2-le[j].x1)**2+(le[j].y2-le[j].y1)**2)
if a < s and b < s:
s = sqrt(a**2-d**2)
x = le[j].x1 + s*cos(th0)
y = le[j].y1 + s*sin(th0)
hit = True
elif a < b and a < pe[i].r:
x = le[j].x1
y = le[j].y1
hit = True
elif b < pe[i].r:
x = le[j].x2
y = le[j].y2
hit = True
if hit:
lx = x - pe[i].x
ly = y - pe[i].y
ld = sqrt(lx**2+ly**2)
cos_a = lx/ld
sin_a = ly/ld
forceLine2par(i,le[j].n,2,cos_a,sin_a)
else:
pe[i].en[le[j].n] = 0.0
pe[i].es[le[j].n] = 0.0
#外力
for i in range(peCount):
pe[i].fy += -G*pe[i].m #重力
def _forcePar2par():
pass
cdef void forcePar2par(int i,int j,double cos_a,double sin_a):
cdef double un,us,vn,vs,hn,hs
cdef Interface inf
#相対的変位増分
un = +(pe[i].dx-pe[j].dx)*cos_a+(pe[i].dy-pe[j].dy)*sin_a
us = -(pe[i].dx-pe[j].dx)*sin_a+(pe[i].dy-pe[j].dy)*cos_a+(pe[i].r*pe[i].da+pe[j].r*pe[j].da)
#相対的速度増分
#vn = +(pe[i].vx-pe[j].vx)*cos_a+(pe[i].vy-pe[j].vy)*sin_a
#vs = -(pe[i].vx-pe[j].vx)*sin_a+(pe[i].vy-pe[j].vy)*cos_a+(pe[i].r*pe[i].va+pe[j].r*pe[j].va)
inf = interface(pe[i].etype,pe[j].etype)
#合力(局所座標系)
pe[i].en[j] += inf.kn*un
pe[i].es[j] += inf.ks*us
hn = pe[i].en[j] + inf.etan*un/dt
hs = pe[i].es[j] + inf.etas*us/dt
if hn <= 0.0: #法線力がなければ、せん断力は0 hs = 0.0 elif fabs(hs) >= inf.frc*hn:
#摩擦力以上のせん断力は働かない
hs = inf.frc*fabs(hn)*hs/fabs(hs)
#全体合力(全体座標系)
pe[i].fx += -hn*cos_a + hs*sin_a
pe[i].fy += -hn*sin_a - hs*cos_a
pe[i].fm -= pe[i].r*hs
#pe[j].fx += hn*cos_a - hs*sin_a
#pe[j].fy += hn*sin_a + hs*cos_a
#pe[j].fm -= pe[j].r*hs
def _forceLine2Par():
pass
cdef void forceLine2par(int i,int ln,int mat,double cos_a, double sin_a):
cdef double un,us,vn,vs,hn,hs
cdef Interface inf
#相対的変位増分
un = +pe[i].dx*cos_a+pe[i].dy*sin_a
us = -pe[i].dx*sin_a+pe[i].dy*cos_a+pe[i].r*pe[i].da
#相対的速度増分
vn = +pe[i].vx*cos_a+pe[i].vy*sin_a
vs = -pe[i].vx*sin_a+pe[i].vy*cos_a+pe[i].r*pe[i].va
inf = interface(pe[i].etype,mat)
#合力(局所座標系)
pe[i].en[ln] += inf.kn*un
pe[i].es[ln] += inf.ks*us
hn = pe[i].en[ln] + inf.etan*vn
hs = pe[i].es[ln] + inf.etas*vs
if hn <= 0.0:#法線力がなければ、せん断力は0 hs = 0.0 elif fabs(hs) >= inf.frc*hn:#摩擦力以上のせん断力は働かない
hs = inf.frc*fabs(hn)*hs/fabs(hs)
#全体合力(全体座標系)
pe[i].fx += -hn*cos_a + hs*sin_a
pe[i].fy += -hn*sin_a - hs*cos_a
pe[i].fm -= pe[i].r*hs
def _updateCoord():
pass
cdef void updateCoord():
global xbook
cdef double ax,ay,aa,v,vmax
vmax = 0
cdef int i
for i in range(peCount):
#位置更新(オイラー差分)
ax = pe[i].fx/pe[i].m
ay = pe[i].fy/pe[i].m
aa = pe[i].fm/pe[i].Ir
pe[i].vx += ax*dt
pe[i].vy += ay*dt
pe[i].va += aa*dt
pe[i].dx = pe[i].vx*dt
pe[i].dy = pe[i].vy*dt
pe[i].da = pe[i].va*dt
pe[i].x += pe[i].dx
pe[i].y += pe[i].dy
pe[i].a += pe[i].da
#以下近傍リスト用処理
v = sqrt(pe[i].vx**2+pe[i].vy**2)
if vmax < v: vmax = v xbook += vmax * dt if xbook > nearAlpha*r_min:
global nearUpdate
nearUpdate = True
xbook = 0
#セル分割法と粒子登録法
##cell = []
##cellCount = []
cdef int ***cell
cdef int **cellCount
cdef int cellInfo[3]
cdef bool nearUpdate = False
cdef double nearAlpha = 0.1
cdef double xbook
cdef int *nearList
def _cellInit():
pass
cdef void cellInit():
global cell,cellCount,nearList
cell_width = r_max*2 + nearAlpha * r_min*2
xn = int(ceil((area[1]-area[0])/cell_width))
yn = int(ceil((area[3]-area[2])/cell_width))
cn = int(ceil(cell_width/r_min)+1)**2 #+1予備(重なりを考慮)
## cell = [[[-1 for i in range(cn)] for j in range(yn)] for k in range(xn)]
## cellCount = [[0 for i in range(yn)] for j in range(xn)]
cell = <int***> PyMem_Malloc(xn * sizeof(int*))
cellCount = <int**> PyMem_Malloc(xn * sizeof(int*))
for i in range(xn):
cell[i] = <int**> PyMem_Malloc(yn * sizeof(int*))
cellCount[i] = <int*> PyMem_Malloc(yn * sizeof(int))
for j in range(yn):
cell[i][j] = <int*> PyMem_Malloc(cn * sizeof(int))
cellInfo[0] = xn #列数
cellInfo[1] = yn #行数
cellInfo[2] = cn #セル格納最大数
cellReset()
nearList = <int*> PyMem_Malloc(cn * sizeof(int))
def _cellRegist():
pass
cdef void cellRegist():
cdef double cell_width
cdef int xn,yn,cn,n,i,k,j,l
cellReset()
cell_width = r_max*2 + nearAlpha * r_min*2
#セルに要素No格納
for i in range(peCount):
xn = int(floor(pe[i].x/cell_width))
yn = int(floor(pe[i].y/cell_width))
if xn<0 or cellInfo[0]<=xn or yn<0 or cellInfo[1]<=yn:
#print('Error! particle coord is out of range.')
#print('Particle n=%d x=%0.3f y=%0.3f' % (i,pe[i].x,pe[i].y))
continue
cn = cellCount[xn][yn]
cell[xn][yn][cn] = i
cellCount[xn][yn] += 1
#近傍リスト作成
for i in range(peCount):
xn = int(floor(pe[i].x/cell_width))
yn = int(floor(pe[i].y/cell_width))
n = 0
for j in range(xn-1,xn+2):
for k in range(yn-1,yn+2):
if j < 0 or cellInfo[0] <= j:
continue
if k < 0 or cellInfo[1] <= k:
continue
for l in range(cellCount[j][k]):
pe[i].nearList[n] = cell[j][k][l]
n += 1
pe[i].nearCount = n
cdef void cellReset():
cdef int i,j,k
for i in range(cellInfo[0]):
for j in range(cellInfo[1]):
cellCount[i][j] = 0
for k in range(cellInfo[2]):
cell[i][j][k] = -1
# -------------------------
# Pythonからの設定用
# -------------------------
def setNumberOfParticle(n):
global peCount,pe
peCount = n
pe = <Particle*> PyMem_Malloc(n * sizeof(Particle))
if not pe:
raise MemoryError()
def setNumberOfLine(n):
global leCount,le
leCount = n
le = <Line*> PyMem_Malloc(n * sizeof(Line))
if not le:
raise MemoryError()
def initialize():
global elCount
elCount = peCount + leCount + 4
cdef int i,j
for i in range(peCount):
pe[i].etype = 1
pe[i].n = i
pe[i].x = 0
pe[i].y = 0
pe[i].r = 0
pe[i].a = 0
pe[i].dx = 0
pe[i].dy = 0
pe[i].da = 0
pe[i].vx = 0
pe[i].vy = 0
pe[i].va = 0
pe[i].fx = 0
pe[i].fy = 0
pe[i].fm = 0
pe[i].m = 0
pe[i].Ir = 0
pe[i].en = <double*> PyMem_Malloc(elCount * sizeof(double))
pe[i].es = <double*> PyMem_Malloc(elCount * sizeof(double))
for j in range(elCount):
pe[i].en[j] = 0
pe[i].es[j] = 0
for i in range(leCount):
le[i].etype = 2
le[i].n = peCount+i
def setDeltaTime(sec):
global dt
dt = sec
def setParticle(pe_no,pe_obj):
pe[pe_no].r = pe_obj.r
pe[pe_no].x = pe_obj.x
pe[pe_no].y = pe_obj.y
pe[pe_no].a = pe_obj.a
pe[pe_no].dx = pe_obj.dx
pe[pe_no].dy = pe_obj.dy
pe[pe_no].da = pe_obj.da
pe[pe_no].vx = pe_obj.vx
pe[pe_no].vy = pe_obj.vy
pe[pe_no].va = pe_obj.va
pe[pe_no].fx = pe_obj.fx
pe[pe_no].fy = pe_obj.fy
pe[pe_no].fm = pe_obj.fm
pe[pe_no].m = pe_obj.m
pe[pe_no].Ir = pe_obj.Ir
cdef int i
for i in range(elCount):
if i < len(pe_obj.en): pe[pe_no].en[i] = pe_obj.en[i] pe[pe_no].es[i] = pe_obj.es[i] def particle(pe_no,pe_obj): pe_obj.n = pe[pe_no].n pe_obj.x = pe[pe_no].x pe_obj.y = pe[pe_no].y pe_obj.a = pe[pe_no].a pe_obj.dx = pe[pe_no].dx pe_obj.dy = pe[pe_no].dy pe_obj.da = pe[pe_no].da pe_obj.vx = pe[pe_no].vx pe_obj.vy = pe[pe_no].vy pe_obj.va = pe[pe_no].va pe_obj.fx = pe[pe_no].fx pe_obj.fy = pe[pe_no].fy pe_obj.fm = pe[pe_no].fm pe_obj.m = pe[pe_no].m pe_obj.Ir = pe[pe_no].Ir pe_obj.en = [0.0 for i in range(elCount)] pe_obj.es = [0.0 for i in range(elCount)] for i in range(elCount): pe_obj.en[i] = pe[pe_no].en[i] pe_obj.es[i] = pe[pe_no].es[i] return pe_obj def setLine(l_no,l_obj): le[l_no].x1 = l_obj.x1 le[l_no].y1 = l_obj.y1 le[l_no].x2 = l_obj.x2 le[l_no].y2 = l_obj.y2 return l_obj def line(l_no,l_obj): l_obj.x1 = le[l_no].x1 l_obj.y1 = le[l_no].y1 l_obj.x2 = le[l_no].x2 l_obj.y2 = le[l_no].y2 return l_no def setArea(x_min,x_max,y_min,y_max): global area area[0] = x_min area[1] = x_max area[2] = y_min area[3] = y_max def setInterface(mat1,mat2,inf_no,inf_obj): infNo[mat1][mat2] = inf_no infs[inf_no].kn = inf_obj.kn infs[inf_no].etan = inf_obj.etan infs[inf_no].ks = inf_obj.ks infs[inf_no].etas = inf_obj.etas infs[inf_no].frc = inf_obj.frc cdef double r_max #粒子の最大半径 cdef double r_min #粒子の最小半径 def setup(): global r_max,r_min cdef int i r_max = 0 r_min = float('inf') for i in range(peCount): if pe[i].r > r_max:
r_max = pe[i].r
if pe[i].r < r_min:
r_min = pe[i].r
cellInit()
pn = cellInfo[2] * 9
for i in range(peCount):
pe[i].nearList = <int*> PyMem_Malloc(pn * sizeof(int))
cellRegist()
def step():
return st
def calcStep(int n=1):
cdef int i
for i in range(n):
nextStep()
dem_ui.py
# -*- coding: utf-8 -*-
print u'読み込み中...',
import sys
import math
import random
import time
import cPickle
import Tkinter
import dem
from PIL import ImageGrab
class Element(object):
def __init__(self):
self.n = 0 #要素No.
self.r = 0 #半径
self.x = 0 #X座標
self.y = 0 #Y座標
self.a = 0 #角度
self.dx = 0 #X方向増加量
self.dy = 0 #Y方向増加量
self.da = 0 #角度増加量
self.vx = 0 #X方向速度
self.vy = 0 #Y方向速度
self.va = 0 #角速度
self.fy = 0
self.fx = 0
self.fm = 0
self.en = [] #弾性力(直方向)
self.es = [] #弾性力(せん断方向)
class Particle(object):
def __init__(self,x=0,y=0,vx=0,vy=0):
#要素共通
self.etype = 1 #要素タイプ
self.n = 0 #要素No.
self.r = 5.0 #半径
self.x = x #X座標
self.y = y #Y座標
self.a = 0.0 #角度
self.dx = 0.0 #X方向増加量
self.dy = 0.0 #Y方向増加量
self.da = 0.0 #角度増加量
self.vx = vx #X方向速度
self.vy = vy #Y方向速度
self.va = 0.0 #角速度
self.fx = 0.0 #X方向節点力
self.fy = 0.0 #Y方向節点力
self.fm = 0.0 #回転モーメント
self.en = [] #弾性力(直方向)
self.es = [] #弾性力(せん断方向)
#粒子専用
rho = 10
self.m = 4.0/3.0*math.pi*rho*self.r**3 # 質量
self.Ir = math.pi*rho*self.r**4/2.0 #慣性モーメント
class Line(object):
def __init__(self,x1,y1,x2,y2):
super(Line,self).__init__()
self.type = 2
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
class Interface(object):
def __init__(self):
self.kn = 0 #弾性係数(法線方向)
self.etan = 0 #粘性係数(法線方向)
self.ks = 0 #弾性係数(せん断方向)
self.etas = 0 #粘性係数(せん断方向)
self.frc = 0 #摩擦係数
class DEM_UI:
def __init__(self):
self._lines = []
self._config()
#self._test()
def _test(self):
self.area = [5,295,5,195]
self.parCount = 2
dem.setArea(*self.area)
dem.setDeltaTime(0.01)
dem.setNumberOfParticle(self.parCount)
dem.setNumberOfLine(0)
dem.initialize()
p1 = Particle(50,50)
p1.r = 10
p2 = Particle(50,70)
p2.r = 10
dem.setParticle(0,p1)
dem.setParticle(1,p2)
#粒子同士
inf = [[Interface() for i in range(9)] for j in range(9)]
inf[1][1].kn = 100000 #弾性係数(法線方向)
inf[1][1].etan= 50000 #粘性係数(法線方向)
inf[1][1].ks = 5000 #弾性係数(せん断方向)
inf[1][1].etas= 1000 #粘性係数(せん断方向)
inf[1][1].frc = 10 #摩擦係数
#粒子と線要素
inf[1][2].kn = 500000
inf[1][2].etan= 10000
inf[1][2].ks = 1000
inf[1][2].etas= 900
inf[1][2].frc = 100
dem.setInterface(1,1,0,inf[1][1])
dem.setInterface(1,2,1,inf[1][2])
dem.setup()
def _config(self):
dt = 0.01
#area = [5,295,5,195]
area = [5,295,-500,195]
step = 2
# lines
lines = []
lines.append(Line(5,40,150,50))
if step <= 1: lines.append(Line(150,50,150,195)) else: lines.append(Line(150,50,150,60)) # particle pars = [] if step == 0: _area = [10,130,45,190] pars = self._setParInArea(_area,pars,lines) elif step == 1: pars = self.load() #さらに粒子追加 #_area = [150,290,10,90] _area = [10,140,130,190] add_pars = self._setParInArea(_area,pars,lines) #弾性力調整 ad = [0 for i in range(len(add_pars))] for p in pars: p.en = p.en[:len(pars)] + ad + p.en[len(pars):] p.es = p.es[:len(pars)] + ad + p.es[len(pars):] pars = pars + add_pars else: pars = self.load() # interface inf1 = Interface() #粒子同士 inf1.kn = 100000 #弾性係数(法線方向) inf1.etan= 50000 #粘性係数(法線方向) inf1.ks = 5000 #弾性係数(せん断方向) inf1.etas= 1000 #粘性係数(せん断方向) inf1.frc = 10 #摩擦係数 #粒子と線要素 inf2 = Interface() inf2.kn = 500000 inf2.etan= 10000 inf2.ks = 1000 inf2.etas= 900 inf2.frc = 100 infs = [] infs.append([1,1,0,inf1]) infs.append([1,2,1,inf2]) self.setup(dt,area,pars,lines,infs) def _setParInArea(self,area,pars,lines,pr=5): # area = [x_min,x_max,y_min,y_max] add_pars = [] for x in range(area[0],area[1],1): for y in range(area[2],area[3],1): _pars = pars + add_pars if self._hitParticle(x,y,pr,_pars): continue if self._hitLine(x,y,pr,lines): continue add_pars.append(Particle(x,y)) return add_pars def _hitParticle(self,x,y,r,pars): hit = False for p in pars: lx = p.x - x ly = p.y - y ld = (lx**2+ly**2)**0.5 if (p.r+r)>=ld:
hit = True
break
return hit
def _hitLine(self,px,py,pr,lines):
hit = False
for l in lines:
th0 = math.atan2(l.y2-l.y1,l.x2-l.x1)
th1 = math.atan2(py-l.y1,px-l.x1)
a = math.sqrt((px-l.x1)**2+(py-l.y1)**2)
d = abs(a*math.sin(th1-th0))
if d < pr:
b = math.sqrt((px-l.x2)**2+(py-l.y2)**2)
s = math.sqrt((l.x2-l.x1)**2+(l.y2-l.y1)**2)
if a < s and b < s:
hit = True
elif a < b and a < pr:
hit = True
elif b < pr: hit = True if hit: break return hit def setup(self,dt,area,pars,lines,infs): #setup dem dem.setDeltaTime(dt) dem.setArea(*area) dem.setNumberOfParticle(len(pars)) dem.setNumberOfLine(len(lines)) dem.initialize() for i,l in enumerate(lines): dem.setLine(i,l) for i,p in enumerate(pars): dem.setParticle(i,p) for v in infs: dem.setInterface(*v) dem.setup() self.area = area self.parCount = len(pars) self._lines = lines def particles(self): pars = [] for i in range(self.parCount): p = dem.particle(i,Particle()) pars.append(p) return pars def lines(self): return self._lines def save(self,fp='init.dem'): f = open(fp,'wb') f.write(cPickle.dumps(self.particles())) f.close() print('save particles data at '+fp) def load(self,fp='init.dem'): f = open(fp,'rb') pars = cPickle.loads(f.read()) f.close() return pars class Window(Tkinter.Tk): def __init__(self): print u'初期設定中...', self.loop_n = 0 self.width = 300 self.height = 200 self.scale = 1.0 Tkinter.Tk.__init__(self) self.canvas = Tkinter.Canvas(self, bg="white") self.canvas.pack(fill=Tkinter.BOTH,expand=True) self.geometry('%dx%d' % (self.width,self.height)) self.title('DEM') self.dem_ui = DEM_UI() a = self.dem_ui.area area = [a[0],a[2],a[1],a[2],a[1],a[3],a[0],a[3],a[0],a[2]] xy = self.viewCoord(area) self.canvas.create_line(xy) for l in self.dem_ui.lines(): xy = self.viewCoord([l.x1,l.y1,l.x2,l.y2]) self.canvas.create_line(xy,width=1) self.redraw() self.update_idletasks() print(u'完了') print(u'粒子要素数: %d ' % self.dem_ui.parCount) print(u'解析開始') def calcloop(self): if self.loop_n == 1: self.saveCalcTime('start') pass if self.loop_n % 5 == 0: print('Step %d' % dem.step()) if self.loop_n % 1 == 0: self.redraw() #self.saveImage() if self.loop_n >= 30:
print(u'解析終了.設定最大ループに達しました')
self.saveCalcTime('finish')
#self.dem_ui.save()
else:
self.after(0,self.calcloop)
dem.calcStep(10)
self.loop_n += 1
self.update_idletasks()
def redraw(self):
self.canvas.delete('elem')
h = self.height
for p in self.dem_ui.particles():
x1,y1 = self.viewCoord([p.x-p.r,p.y-p.r])
x2,y2 = self.viewCoord([p.x+p.r,p.y+p.r])
self.canvas.create_oval(x1,y1,x2,y2,tags='elem')
x1,y1 = self.viewCoord([p.x,p.y])
x2,y2 = self.viewCoord([p.x+p.r*math.cos(p.a),
p.y+p.r*math.sin(p.a)])
self.canvas.create_line(x1,y1,x2,y2,tags='elem')
def viewCoord(self,coords,offset=(0,0)):
s = self.scale # 表示倍率
h = self.height #表示画面高さ
w = self.width #表示画面幅
x_offset = 0#int(w/2)
y_offset = 0#int(h/2)
xy_list = []
for i in range(0,len(coords),2):
x = round(s*coords[i])+x_offset
y = round(h-s*coords[i+1])-y_offset
x = x + offset[0]
y = y + offset[1]
xy_list.append(x)
xy_list.append(y)
return xy_list
def saveCalcTime(self,option):
if option == 'start':
self.st_time = time.time()
self.st_step = dem.step()
elif option == 'finish':
now = time.time()
dt = now-self.st_time
ds = dem.step() - self.st_step +1
f = open('calc_time.txt','w')
f.write('START STEP %d\n' % self.st_step)
f.write('START TIME {0}\n'.format(self.st_time))
f.write('END STEP %d\n' % dem.step())
f.write('END TIME {0}\n'.format(now))
f.write('DIFF STEP %d \n' % ds)
f.write('DIFF TIME {0}\n'.format(dt))
f.write('ONE STEP TIME {0}'.format(dt/ds))
f.close()
def saveImage(self):
filepath = 'c://Temp/dem/capture%05d.png' % dem.step()
img = ImageGrab.grab()
s,x,y = self.geometry().split('+')
w,h = s.split('x')
w,h,x,y = map(int,[w,h,x,y])
x += 8
y += 30
img = img.crop((x,y,x+w,y+h))
img.save(filepath)
def main():
w = Window()
w.after(0,w.calcloop)
w.mainloop()
def test():
dem_ui = DEM_UI()
en1 = dem_ui.particles()[100].es
pars = dem_ui.load()
en2 = pars[100].es
for i in range(len(en1)):
v = en1[i] - en2[i]
#if abs(v) > 1:
print(i,v)#,en1[i],en2[i])
print u'完了'
if __name__ == '__main__':
main()
