前回のプログラムを、バク直したり、使いたくないかったポインタ変数使ってみたりして、一区切りついた感じなので、投稿しときます。
この先は、土木屋っぽく土を疑似するように必要な機能を実装していく予定。
Cython:dem.pyx [dem.pyd]
# -*- coding: utf-8 -*- #Cython仕様で一から作ってみる from libc.math cimport sqrt,sin,cos,atan2,fabs from cpython cimport bool from cpython.mem cimport PyMem_Malloc, PyMem_Realloc, PyMem_Free cdef double PI = 3.1415926535 #円周率 cdef double G = 9.80665 #重力加速度 cdef struct Particle: #要素共通 int etype #要素タイプ int n #要素No. double r#半径 double x#X座標 double y#Y座標 double a#角度 double dx#X方向増加量 double dy#Y方向増加量 double da#角度増加量 double vx#X方向速度 double vy#Y方向速度 double va#角速度 double fy double fx double fm double *en #弾性力(直方向) double *es #弾性力(せん断方向) #粒子専用 double m# 質量 double Ir#慣性モーメント cdef struct Line: #要素共通 int etype #要素タイプ int n #要素No. double r#半径 double x#X座標 double y#Y座標 double a#角度 double dx#X方向増加量 double dy#Y方向増加量 double da#角度増加量 double vx#X方向速度 double vy#Y方向速度 double va#角速度 double fy double fx double fm #double *en #弾性力(直方向) #double *es #弾性力(せん断方向) #線要素専用 double x1 double y1 double x2 double y2 cdef struct Interface: double kn #弾性係数(法線方向) double etan#粘性係数(法線方向) double ks#弾性係数(せん断方向) double etas#弾性係数(せん断方向) double frc#摩擦係数 #グローバル変数 cdef Particle *pe cdef Line *le cdef Interface infs[9] cdef int infNo[9][9] cdef int area[4] # 解析範囲 cdef int peCount #粒子の数 cdef int leCount #線要素の数 cdef double dt = 0.001 #計算間隔 cdef int st = 0 #ステップ cdef double rho = 10 #粒子間密度 cdef void nextStep(): resetForce() calcForce() updateCoord() global st st += 1 cdef void resetForce(): cdef int i for i in range(peCount): pe[i].fx = 0 pe[i].fy = 0 pe[i].fm = 0 cdef Interface interface(int etype1,int etype2): cdef Interface inf cdef int n n = infNo[etype1][etype2] inf.kn = infs[n].kn inf.etan = infs[n].etan inf.ks = infs[n].ks inf.etas = infs[n].etas inf.frc = infs[n].frc return inf cdef void calcForce(): #2粒子間の接触判定 cdef double lx,ly,ld,cos_a,sin_a cdef int i,j,n for i in range(peCount): for j in range(i+1,peCount): lx = pe[j].x - pe[i].x ly = pe[j].y - pe[i].y ld = (lx**2+ly**2)**0.5 if (pe[i].r+pe[j].r)>ld: cos_a = lx/ld sin_a = ly/ld forcePar2par(i,j,cos_a,sin_a) else: pe[i].en[j] = 0.0 pe[i].es[j] = 0.0 #粒子と壁の接触判定 cdef double cond[4],xs[4],ys[4] for i in range(peCount): cond = [pe[i].x-pe[i].r-area[0],-(pe[i].x+pe[i].r-area[1]), pe[i].y-pe[i].r-area[2],-(pe[i].y+pe[i].r-area[3])] xs = [area[0],area[1],pe[i].x,pe[i].x] ys = [pe[i].y,pe[i].y,area[2],area[3]] for j in range(4): n = peCount + leCount + j if cond[j] < 0: lx = xs[j] - pe[i].x ly = ys[j] - pe[i].y ld = sqrt(lx**2+ly**2) cos_a = lx/ld sin_a = ly/ld forceLine2par(i,n,2,cos_a,sin_a) else: pe[i].en[n] = 0.0 pe[i].es[n] = 0.0 #粒子と線の接触判定 cdef bool hit cdef double x,y,a,d,b,s for i in range(peCount): for j in range(leCount): hit = False th0 = atan2(le[j].y2-le[j].y1, le[j].x2-le[j].x1) th1 = atan2(pe[i].y -le[j].y1, pe[i].x -le[j].x1) a = sqrt((pe[i].x-le[j].x1)**2+(pe[i].y-le[j].y1)**2) d = fabs(a*sin(th1-th0)) if d < pe[i].r: b = sqrt((pe[i].x -le[j].x2)**2+(pe[i].y -le[j].y2)**2) s = sqrt((le[j].x2-le[j].x1)**2+(le[j].y2-le[j].y1)**2) if a < s and b < s: s = sqrt(a**2-d**2) x = le[j].x1 + s*cos(th0) y = le[j].y1 + s*sin(th0) hit = True elif a < b and a < pe[i].r: x = le[j].x1 y = le[j].y1 hit = True elif b < pe[i].r: x = le[j].x2 y = le[j].y2 hit = True if hit: lx = x - pe[i].x ly = y - pe[i].y ld = sqrt(lx**2+ly**2) cos_a = lx/ld sin_a = ly/ld forceLine2par(i,le[j].n,2,cos_a,sin_a) else: pe[i].en[le[j].n] = 0.0 pe[i].es[le[j].n] = 0.0 #外力 for i in range(peCount): pe[i].fy += -G*pe[i].m #重力 cdef void forcePar2par(int i,int j,double cos_a,double sin_a): cdef double un,us,vn,vs,hn,hs cdef Interface inf #相対的変位増分 un = +(pe[i].dx-pe[j].dx)*cos_a+(pe[i].dy-pe[j].dy)*sin_a us = -(pe[i].dx-pe[j].dx)*sin_a+(pe[i].dy-pe[j].dy)*cos_a+(pe[i].r*pe[i].da+pe[j].r*pe[j].da) #相対的速度増分 #vn = +(pe[i].vx-pe[j].vx)*cos_a+(pe[i].vy-pe[j].vy)*sin_a #vs = -(pe[i].vx-pe[j].vx)*sin_a+(pe[i].vy-pe[j].vy)*cos_a+(pe[i].r*pe[i].va+pe[j].r*pe[j].va) inf = interface(pe[i].etype,pe[j].etype) #合力(局所座標系) pe[i].en[j] += inf.kn*un pe[i].es[j] += inf.ks*us hn = pe[i].en[j] + inf.etan*un/dt hs = pe[i].es[j] + inf.etas*us/dt if hn <= 0.0: #法線力がなければ、せん断力は0 hs = 0.0 elif fabs(hs) >= inf.frc*hn: #摩擦力以上のせん断力は働かない hs = inf.frc*fabs(hn)*hs/fabs(hs) #全体合力(全体座標系) pe[i].fx += -hn*cos_a + hs*sin_a pe[i].fy += -hn*sin_a - hs*cos_a pe[i].fm -= pe[i].r*hs pe[j].fx += hn*cos_a - hs*sin_a pe[j].fy += hn*sin_a + hs*cos_a pe[j].fm -= pe[j].r*hs cdef void forceLine2par(int i,int ln,int mat,double cos_a, double sin_a): cdef double un,us,vn,vs,hn,hs cdef Interface inf #相対的変位増分 un = +pe[i].dx*cos_a+pe[i].dy*sin_a us = -pe[i].dx*sin_a+pe[i].dy*cos_a+pe[i].r*pe[i].da #相対的速度増分 vn = +pe[i].vx*cos_a+pe[i].vy*sin_a vs = -pe[i].vx*sin_a+pe[i].vy*cos_a+pe[i].r*pe[i].va inf = interface(pe[i].etype,mat) #合力(局所座標系) pe[i].en[ln] += inf.kn*un pe[i].es[ln] += inf.ks*us hn = pe[i].en[ln] + inf.etan*vn hs = pe[i].es[ln] + inf.etas*vs if hn <= 0.0:#法線力がなければ、せん断力は0 hs = 0.0 elif fabs(hs) >= inf.frc*hn:#摩擦力以上のせん断力は働かない hs = inf.frc*fabs(hn)*hs/fabs(hs) #全体合力(全体座標系) pe[i].fx += -hn*cos_a + hs*sin_a pe[i].fy += -hn*sin_a - hs*cos_a pe[i].fm -= pe[i].r*hs cdef void updateCoord(): cdef double ax,ay,aa cdef int i for i in range(peCount): #位置更新(オイラー差分) ax = pe[i].fx/pe[i].m ay = pe[i].fy/pe[i].m aa = pe[i].fm/pe[i].Ir pe[i].vx += ax*dt pe[i].vy += ay*dt pe[i].va += aa*dt pe[i].dx = pe[i].vx*dt pe[i].dy = pe[i].vy*dt pe[i].da = pe[i].va*dt pe[i].x += pe[i].dx pe[i].y += pe[i].dy pe[i].a += pe[i].da # ------------------------- # Pythonからの設定用 # ------------------------- def setDeltaTime(sec): global dt dt = sec def setNumberOfParticle(n): global peCount,pe peCount = n pe =PyMem_Malloc(n * sizeof(Particle)) if not pe: raise MemoryError() def setParticle(pe_no,pe_obj): pe[pe_no].x = pe_obj.x pe[pe_no].y = pe_obj.y def particle(pe_no,pe_obj): pe_obj.x = pe[pe_no].x pe_obj.y = pe[pe_no].y pe_obj.a = pe[pe_no].a return pe_obj def setNumberOfLine(n): global leCount,le leCount = n le = PyMem_Malloc(n * sizeof(Line)) if not le: raise MemoryError() def setLine(l_no,l_obj): le[l_no].x1 = l_obj.x1 le[l_no].y1 = l_obj.y1 le[l_no].x2 = l_obj.x2 le[l_no].y2 = l_obj.y2 return l_obj def line(l_no,l_obj): l_obj.x1 = le[l_no].x1 l_obj.y1 = le[l_no].y1 l_obj.x2 = le[l_no].x2 l_obj.y2 = le[l_no].y2 return l_no def setArea(x_min,x_max,y_min,y_max): global area area[0] = x_min area[1] = x_max area[2] = y_min area[3] = y_max def setInterface(mat1,mat2,inf_no,inf_obj): infNo[mat1][mat2] = inf_no infs[inf_no].kn = inf_obj.kn infs[inf_no].etan = inf_obj.etan infs[inf_no].ks = inf_obj.ks infs[inf_no].etas = inf_obj.etas infs[inf_no].frc = inf_obj.frc def initialize(): cdef int i,j,n n = peCount + leCount + 4 for i in range(peCount): pe[i].etype = 1 pe[i].n = i pe[i].x = 0 pe[i].y = 0 pe[i].r = 0 pe[i].a = 0 pe[i].dx = 0 pe[i].dy = 0 pe[i].da = 0 pe[i].vx = 0 pe[i].vy = 0 pe[i].va = 0 pe[i].fx = 0 pe[i].fy = 0 pe[i].fm = 0 pe[i].m = 0 pe[i].Ir = 0 pe[i].en = PyMem_Malloc(n * sizeof(double)) pe[i].es = PyMem_Malloc(n * sizeof(double)) for j in range(n): pe[i].en[j] = 0 pe[i].es[j] = 0 for i in range(leCount): le[i].etype = 2 le[i].n = peCount+i def setup(): cdef int i #粒子要素 for i in range(peCount): pe[i].r = 5.0 pe[i].m = 4.0/3.0*PI*rho*pe[i].r**3 # 質量 pe[i].Ir = PI*rho*pe[i].r**4/2.0 #慣性モーメント #線要素 def step(): return st def calcStep(int n=1): cdef int i for i in range(n): nextStep()
Python:dem_ui.py
# -*- coding: utf-8 -*- print u'読み込み中...', import sys import math import random import time import Tkinter import dem from PIL import ImageGrab class Element(object): def __init__(self): self.n = 0 #要素No. self.r = 0 #半径 self.x = 0 #X座標 self.y = 0 #Y座標 self.a = 0 #角度 self.dx = 0 #X方向増加量 self.dy = 0 #Y方向増加量 self.da = 0 #角度増加量 self.vx = 0 #X方向速度 self.vy = 0 #Y方向速度 self.va = 0 #角速度 self.fy = 0 self.fx = 0 self.fm = 0 self.en = [] #弾性力(直方向) self.es = [] #弾性力(せん断方向) class Particle(Element): def __init__(self,x=0,y=0,vx=0,vy=0): super(Particle,self).__init__() self.type = 1 self.x = x #X座標 self.y = y #Y座標 self.vx = vx #X方向速度 self.vy = vy #Y方向速度 rho = 10 self.r = 5 #半径 self.m = 4.0/3.0*math.pi*rho*self.r**3 # 質量 self.loop_nr = math.pi*rho*self.r**4/2.0 #慣性モーメント class Line(Element): def __init__(self,x1,y1,x2,y2): super(Line,self).__init__() self.type = 2 self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 class Interface(object): def __init__(self): self.kn = 0 #弾性係数(法線方向) self.etan = 0 #粘性係数(法線方向) self.ks = 0 #弾性係数(せん断方向) self.etas = 0 #粘性係数(せん断方向) self.frc = 0 #摩擦係数 class DEM_UI: def __init__(self): self._pars = [] self._lines = [] self._setup() def _setup(self): self.area = [5,295,5,195] # lines self._lines = [] self._lines.append(Line(100,100,300,150)) self._lines.append(Line(10,80,160,50)) # particle pars = [] for x in range(40,290,2): for y in range(145,190,2): if self._hitParticle(x,y,5,pars): continue if self._hitLine(x,y,5,self._lines): continue pars.append(Particle(x,y)) #if len(pars) >= 1: break self.parCount = len(pars) # interface inf = [[Interface() for i in range(9)] for j in range(9)] #粒子同士 inf[1][1].kn = 100000 #弾性係数(法線方向) inf[1][1].etan= 5000 #粘性係数(法線方向) inf[1][1].ks = 5000 #弾性係数(せん断方向) inf[1][1].etas= 1000 #粘性係数(せん断方向) inf[1][1].frc = 10 #摩擦係数 #粒子と線要素 inf[1][2].kn = 500000 inf[1][2].etan= 10000 inf[1][2].ks = 1000 inf[1][2].etas= 900 inf[1][2].frc = 1 #setup dem dem.setDeltaTime(0.01) dem.setArea(*self.area) dem.setNumberOfParticle(self.parCount) dem.setNumberOfLine(len(self._lines)) dem.initialize() for i,l in enumerate(self._lines): dem.setLine(i,l) for i,p in enumerate(pars): dem.setParticle(i,p) dem.setInterface(1,1,0,inf[1][1]) dem.setInterface(1,2,1,inf[1][2]) dem.setup() print(u'完了') print(u'粒子要素数: %d ' % self.parCount) def _hitParticle(self,x,y,r,pars): hit = False for p in pars: lx = p.x - x ly = p.y - y ld = (lx**2+ly**2)**0.5 if (p.r+r)>=ld: hit = True break return hit def _hitLine(self,px,py,pr,lines): hit = False for l in lines: th0 = math.atan2(l.y2-l.y1,l.x2-l.x1) th1 = math.atan2(py-l.y1,px-l.x1) a = math.sqrt((px-l.x1)**2+(py-l.y1)**2) d = abs(a*math.sin(th1-th0)) if d < pr: b = math.sqrt((px-l.x2)**2+(py-l.y2)**2) s = math.sqrt((l.x2-l.x1)**2+(l.y2-l.y1)**2) if a < s and b < s: hit = True elif a < b and a < pr: hit = True elif b < pr: hit = True if hit: break return hit def particles(self): pars = [] for i in range(self.parCount): p = dem.particle(i,Particle()) pars.append(p) return pars def lines(self): return self._lines class Window(Tkinter.Tk): def __init__(self): self.loop_n = 0 print u'初期設定中...', Tkinter.Tk.__init__(self) self.canvas = Tkinter.Canvas(self, bg="white") self.canvas.pack(fill=Tkinter.BOTH,expand=True) self.geometry('300x200') self.title('DEM') self.dem_ui = DEM_UI() a = self.dem_ui.area self.canvas.create_line(a[0],a[2],a[1],a[2],a[1],a[3], a[0],a[3],a[0],a[2]) for l in self.dem_ui.lines(): xy = self.viewCoord([l.x1,l.y1,l.x2,l.y2]) self.canvas.create_line(xy,width=1) self.redraw() self.update_idletasks() print(u'解析開始') def calcloop(self): dem.calcStep(10) if self.loop_n == 1: self.saveCalcTime('start') if self.loop_n % 5 == 0: print('Step %d' % dem.step()) if self.loop_n % 1 == 0: self.redraw() self.saveImage() if self.loop_n >= 1000: self.saveCalcTime('finish') print(u'解析終了.設定最大ループに達しました') else: self.after(0,self.calcloop) self.update_idletasks() self.loop_n += 1 def redraw(self): self.canvas.delete('elem') h = 200 for p in self.dem_ui.particles(): x1,y1 = self.viewCoord([p.x-p.r,p.y-p.r]) x2,y2 = self.viewCoord([p.x+p.r,p.y+p.r]) self.canvas.create_oval(x1,y1,x2,y2,tags='elem') x1,y1 = self.viewCoord([p.x,p.y]) x2,y2 = self.viewCoord([p.x+p.r*math.cos(p.a), p.y+p.r*math.sin(p.a)]) self.canvas.create_line(x1,y1,x2,y2,tags='elem') def viewCoord(self,coords,offset=(0,0)): s = 1.0 # 表示倍率 h = 200 #表示画面高さ w = 300 #表示画面幅 x_offset = 0#int(w/2) y_offset = 0#int(h/2) xy_list = [] for i in range(0,len(coords),2): x = round(s*coords[i])+x_offset y = round(h-s*coords[i+1])-y_offset x = x + offset[0] y = y + offset[1] xy_list.append(x) xy_list.append(y) return xy_list def saveCalcTime(self,option): if option == 'start': self.st_time = time.time() self.st_step = dem.step() elif option == 'finish': now = time.time() dt = now-self.st_time ds = dem.step() - self.st_step +1 f = open('calc_time.txt','w') f.write('START STEP %d\n' % self.st_step) f.write('START TIME {0}\n'.format(self.st_time)) f.write('END STEP %d\n' % dem.step()) f.write('END TIME {0}\n'.format(now)) f.write('DIFF STEP %d \n' % ds) f.write('DIFF TIME {0}\n'.format(dt)) f.write('ONE STEP TIME {0}'.format(dt/ds)) f.close() def saveImage(self): filepath = 'c://Temp/dem/capture%05d.png' % dem.step() img = ImageGrab.grab() s,x,y = self.geometry().split('+') w,h = s.split('x') w,h,x,y = map(int,[w,h,x,y]) x += 8 y += 30 img = img.crop((x,y,x+w,y+h)) img.save(filepath) def main(): w = Window() w.after(0,w.calcloop) w.mainloop() print u'完了' if __name__ == '__main__': main()